Electrochemical fuels

Electrochemical fuels

Carbon-based fuels make up the backbone of today's energy infrastructure and have unparalleled energy efficiency. If an efficient (photo-)electrochemical route to producing carbon-based fuels from CO2 can be developed, then a range of new primary energy options, including solar, wind, geothermal, hydro, and nuclear, will be capable of providing hydrocarbon fuels for our future energy infrastructure. To enable the production of hydrocarbons in an electrochemical cell, the development of an efficient electrocatalyst to serve as the cathode is paramount. In the 1980s, copper was identified as a unique electrocatalyst material for its ability to produce hydrocarbons and alcohols with a faradaic selectivity in excess of 60%; however, the overpotential on copper electrodes is around 1 V. Since then, no other metal electrocatalysts have been found with selectivity as high as that of copper. The mechanism for how copper carries out this selective reduction, as well as the reason for the overpotential, have remained elusive. We are using density functional theory (DFT) to understand the reactivity and selectivity of the copper catalyst, and are using this knowledge to develop design principles that may enable more efficient electrocatalysts to be developed. The figure shows the elementary pathway that we have identified for this process, along with the corresponding free energetics of each elementary step as calculated with DFT. CO2 is first reduced by a proton-electron pair to form carboxy (COOH*), an adsorbate that bonds to the Cu electrocatalyst. (An asterisk, *, indicates a surface-adsorbed species.) The carboxy is then reduced to form CO*, liberating H2O in the process. In the potential-limiting step, CO* is protonated resulting in formyl (CHO*). This step is the most difficult from an energetic standpoint and determines the voltage requirements of the overall process. The formyl is further protonated to formaldehyde (CH2O*) and methoxy (CH3O*) before methane (CH4) is liberated, breaking the second C-O bond. This leaves O on the surface, which is cleared as water. Using the findings of this proposed mechanism, we are studying the energetics of CO2 reduction on other metal electrocatalyst surfaces in order to understand trends in CO2 reduction from first principles. We are using the design principles that we are developing to search for candidate materials that can perform the electroreduction of CO2 with higher efficiency than Cu without sacrificing selectivity. As candidate materials are developed using computational tools, we will work with experimental collaborators to test these materials for their activity in CO2 reduction.

Publications

Displaying 101 - 120 of 136

Kyuho Lee, Raul A. Flores, Yunzhi Liu, Bai Yang Wang, Yasuyuki Hikita, Robert Sinclair, Michal Bajdich, Harold Y. Hwang. ACS Applied Energy Materials, 4, 3074-3082. 2021.

Xu, Shicheng, Wang, Zhaoxuan, Dull, Sam, Liu, Yunzhi, Lee, Dong Un, Lezama Pacheco, Juan S., Orazov, Marat, Vullum, Per Erik, Dadlani, Anup Lai, Vinogradova, Olga, Schindler, Peter, Tan, Qizhan, Schladt, Thomas D., Mueller, Jonathan E., Kirsch, Sebastian, Huebner, Gerold, Higgins, Drew, Torgensen, Jan, Viswanathan, Venkatasubramanian, Jaramillo, Thomas Francisco, Prinz, Fritz B.. Advanced Materials, 33. 2021.

Micha Ben-Naim, Yunzhi Liu, Michaela Burke Stevens, Kyuho Lee, Melissa R. Wette, Alexey Boubnov, Artem A. Trofimov, Anton V. Ievlev, Alex Belianinov, Ryan C. Davis, Bruce M. Clemens, Simon R. Bare, Yasuyuki Hikita, Harold Y. Hwang, Drew C. Higgins, Robert Sinclair, Thomas F. Jaramillo. Advanced Functional Materials , 31-2101542. 2021.

Alan T. Landers, Hongjie Peng, David M. Koshy, Soo Hong Lee, Jeremy T. Feaster, John C. Lin, Jeffrey W. Beeman, Drew Higgins, Junko Yano, Walter S. Drisdell, Ryan C. Davis, Michal Bajdich, Frank Abild-Pedersen, Apurva Mehta , Thomas F. Jaramillo, Christopher Hahn. Chemistry of Materials , 33, 5872-5884. 2021.

Yusaku F. Nishimura, Hong-Jie Peng, Stephanie Nitopi, Michal Bajdich, Lei Wang, Carlos G. Morales-Guio, Frank Abild-Pedersen, Thomas F. Jaramillo, Christopher Hahn. ACS Appl. Mater. Interfaces, 13, 52044-52054. 2021.

Xueli Zheng, Jing Tang, Alessandro Gallo, Jose A. Garrido Torres, Xiaoyun Yu, Constantine J. Athanitis, Emily May Been, Peter Ercius, Haiyan Mao, Sirine C. Fakra, Chengyu Song, Ryan C. Davis, Jeffrey A. Reimer, John Vinson, Michal Bajdich, Yi Cui. Proceedings of the National Academy of Sciences. 2021.

Yongmin Kim, Shicheng Xu, Joonsuk Park, Anup Lal Dadlani, Olga Vinogradova, Dilip Krishnamurthy, Marat Orazov, Dong Un Lee, Sam Dull, Peter Schindler, Hyun Soo Han, Zhaoxuan Wang, Tanja Graf, Thomas D. Schladt, Jonathan E. Mueller, Ritimuka Sarangi, Ryan Davis, Ventkatasubramanian Viswanathan, Thomas F. Jaramillo, Drew C. Higgins, Fritz B. Prinz. Applied Catalysis B: Environmental, 300. 2022.

Sarah Lamaison, David Wakerley, Frauke Kracke, Thomas Moore, Lan Zhou, Dong Un Lee, Lei Wang, McKenzie Hubert, Jaime E. Aviles Acosta, John M. Gregoire, Eric B. Duoss, Sarah Baker, Victor A. Beck, Alfred M. Spormann, Marc Fontecave, Christopher Hahn, Thomas F. Jaramillo. Advanced Materials, 2103963. 2021.

Ben-Naim, Micha, Aldridge, Chase, Steiner, Myles A., Britto, Reuben J., Nielander, Adam C., King, Laurie A., Deutsch, Todd G., Young, James L., Jaramillo, Thomas F.. ACS Applied Materials and Interfaces. 2022.

Karun K. Rao, Yungchieh Lai, Lan Zhou, Joel A. Haber, Michal Bajdich, John M. Gregoire. ACS Chemistry of Materials, 34, 899-910. 2022.

Sarah J. Blair, Mathieu Doucet, James F. Browning, Kevin Stone, Hanyu Wang, Candice Halbert, Jaime Aviles Acosta, Jose Zamora Zeledon, Adam C. Nielander, Alessandro Gallo, Thomas F. Jaramillo. ACS Energy Letters, 7, 1939-1946. 2022.

Xinjian Shi, Hong-Jie Peng, Thomas J. P. Hersbach, Yue Jiang, Jihyun Baek, Kirsten T. Winther, Dimosthenis Sokaras, Xiaolin Zheng, Michal Bajdich. ACS Energy Letters. 2022.

Lan Zhou, Elizabeth A. Peterson, Karun K. Rao, Yubing Lu, Xiang Li, Yungchieh Lai, Sage R. Bauers, Matthias H. Richter, KevinKan , Yu Wang , Paul F. Newhouse, Junko Yano, Jeffrey B. Neaton, Michal Bajdich, John M. Gregoire. Cell Reports Physical Science. 2022.

David M. Koshy, Md Delowar Hossain, Ryo Masuda, Yoshitaka Yoda, Leland B. Gee, Kabir Abiose, Huaxin Gong, Ryan Davis, Makoto Seto, Alessandro Gallo, Christopher Hahn, Michal Bajdich, Zhenan Bao, Thomas F. Jaramillo. JACS. 2022.

Evan Z. Carlson, William C. Chueh, J. Tyler Mefford, Michal Bajdich. ACS Applied Materials & Interfaces , 15, 1513-1524. 2022.

Lingze Wei, Md Delowar Hossain, Michael J Boyd, Jaime Aviles-Acosta , Melissa E Kreider, Adam C Nielander, Michaela Burke Stevens, Thomas F Jaramillo, Michal Bajdich, Christopher Hahn. ACS Catalysis

Daniela H. Marin, Joseph T. Perryman, McKenzie A. Hubert, Grace A. Lindquist, Lihaokun Chen, Ashton M. Aleman, Gaurav A. Kamat, Valerie A. Niemann, Michaela Burke Stevens, Yagya N. Regmi, Shannon W. Boettcher, Adam C. Nielander, Thomas F. Jaramillo. Joule, 7. 2023.

Valerie Niemann, Peter Benedek, Jinyu Guo, Y. Xu, Sarah Blair, Elizabeth Corson, Adam Nielander, Thomas Jaramillo, William Tarpeh. ACS Catalysis, 13, 6268-6279. 2023.

Michael John Craig, Felix Kleuker, Michal Bajdich , Max Garcia-Melchor . Catalysis Science & Technology. 2023.

Jihyun Baek , Md Delowar Hossain , Pinaki Mukherjee, Junghwa Lee , Kirsten Winther , Juyoung Leem , Yue Jiang , William Chueh , Michal Bajdich, Xiaolin Zheng. Nature Communications. 2023.