Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates

Authors: 
Theis L. Skafte, Zixuan Guan, Michael L. Machala, Chirranjeevi B. Gopal, Matteo Monti, Lev Martinez, Eugen Stamate, Simone Sanna, Jose A. Garrido Torres, Ethan J. Crumlin, Max García-Melchor, Michal Bajdich, William C. Chueh, Christopher Graves
Year of publication: 
2019
Journal: 
Nature Energy

High-temperature CO2 electrolysers offer exceptionally efficient storage of renewable electricity in the form of CO and other chemical fuels, but conventional electrodes catalyse destructive carbon deposition. Ceria catalysts are known carbon inhibitors for fuel cell (oxidation) reactions; however, for more severe electrolysis (reduction) conditions, catalyst design strategies remain unclear. Here we establish the inhibition mechanism on ceria and show selective CO2 to CO conversion well beyond the thermodynamic carbon deposition threshold. Operando X-ray photoelectron spectroscopy during CO2 electrolysis—using thin-film model electrodes consisting of samarium-doped ceria, nickel and/or yttria-stabilized zirconia—together with density functional theory modelling, reveal the crucial role of oxidized carbon intermediates in preventing carbon build-up. Using these insights, we demonstrate stable electrochemical CO2 reduction with a scaled-up 16 cm2 ceria-based solid-oxide cell under conditions that rapidly destroy a nickel-based cell, leading to substantially improved device lifetime. The computational data is fully archived online at https://www.catalysis-hub.org/publications/SkafteSelective2019

Funding sources: