Active and Stable Ir@Pt Core–Shell Catalysts for Electrochemical Oxygen Reduction

Alaina L. Strickler, Ariel Jackson, Thomas F. Jaramillo
Year of publication: 
ACS Energy Letters

Electrochemical oxygen reduction is an important reaction for many sustainable energy technologies, such as fuel cells and metal–air batteries. Kinetic limitations of this reaction, expensive electrocatalysts, and catalyst instability, however, limit the commercial viability of such devices. Herein, we report an active Ir@Pt core–shell catalyst that combines platinum overlayers with nanostructure effects to tune the oxygen binding to the Pt surface, thereby achieving enhanced activity and stability for the oxygen reduction reaction. Ir@Pt nanoparticles with several shell thicknesses were synthesized in a scalable, inexpensive, one-pot polyol method. Electrochemical analysis demonstrates the activity and stability of the Ir@Pt catalyst, with specific and mass activities increasing to 2.6 and 1.8 times that of commercial Pt/C (TKK), respectively, after 10 000 stability cycles. Activity enhancement of the Ir@Pt catalyst is attributed to weakening of the oxygen binding to the Pt surface induced by the Ir core.

Research Areas: 
Funding sources: